TEMPLATE FOR COURSE SPECIFICATION

Higher Education Performance Review: Programme Review

COURSE SPECIFICATION

This Course Specification provides a concise summary of the main features of the course and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. It should be cross-referenced with the programme specification.

1. Teaching Institution	Al-Nahrain University/College of Science
2. University Department/Centre	Dept. of Mathematics and Computer Applications
3. Course title/code	Abstract Algebra 2nd semester 3rd stage /
4. Modes of Attendance offered	attendance.
5. Semester/Year	First 2022-2023
6. Number of hours tuition (total)	4 hours
7. Date of production/revision of this specification	2022

8. Aims of the Course

1- Introducing students to basic concepts and important theorems in basic algebra topics

2- Equipping students with the basic concepts of the theory of groups, rings and morphology and the basic theories of groups, rings and ideals Silo 's theorems and their applications.

At the end of this semester, the student can

• Create complex examples in the topic of group theory of rings.

• Proof of new theories, preliminaries and results in the subject of the group theory..

• Students learn a variety of topics in the mathematical developments of sylow theorem and its applications.

9. Learning Outcomes, Teaching ,Learning and Assessment Methode

A- Cognitive goals

- 1- Form a strong foundation for the student in the subject of pure mathematics.
- 2- Creating advanced thinking in understanding most mathematics topics.

B. The skills goals special to the course..

1- Infusion of a sufficient and rich amount of specialized information and .terminology regarding the scientific material.

- 2- Analytical and inferential skills
- 3- Development skills

Teaching and Learning Methods

- Providing students with the basics and additional topics related to thinking outcomes
- Forming discussion groups during the lectures to discuss
- ,Ask students a set of thinking questions during the lectures such as what, how when and why for specific topics

Giving students assignments that require self-explanations

Assessment methods

- Weekly exams
- Monthly exams

Specific grades with assignments and reports

C. Affective and value goals

1- Enabling students to solve problems related to the intellectual framework of the lecture material

2-Enabling students to think intellectual questions from the lecture material

3- The link between the lecture curriculum and the study materials in the -

previous stages.

4- Practical applications, especially with our daily lives.

D. General and rehabilitative transferred skills(other skills relevant to employability and personal development)

- 1- General algebraic skills to solve some life problems
- 2- Follow up on scientific development by getting acquainted with new books and research via the Internet.
- 3- Participation in scientific conferences.
- 4- Participation in workshops and scientific symposia.

10. Course Structure					
Week	Hours	ILOs	Unit/Module or Topic Title	Teaching Method	Assessment Method
1 st	4		Binary operation- algebraic structure- semi group- monoid	Theoretical lectures	Weekly quizzes
2 nd	4		Group and some examples	Theoretical lectures	Weekly quizzes
3 rd	4		Properties of groups	Theoretical lectures	Weekly quizzes
4 th	4		Properties of groups	Theoretical lectures	Weekly quizzes
5 th	4		Order of group and order of element- Lagrange theorem	Theoretical lectures	Weekly quizzes
6 th	4		Order of group and order of element- Lagrange theorem	Theoretical lectures	Weekly quizzes
7 th	4		Abelian group and some examples	Theoretical lectures	Weekly quizzes
8 th	4		Center of group Subgroup	Theoretical lectures	Weekly quizzes
9 th	4		Cyclic group	Theoretical lectures	Weekly quizzes
10 th	4		Symmetric group	Theoretical lectures	Weekly quizzes
11 th	4		Symmetric group	Theoretical	Weekly quizzes

			lectures	
12 th	4	Normal group	Theoretical	Weekly quizzes
			lectures	
13 th	4	Normal group	Theoretical	Weekly quizzes
			lectures	
14 th	4	Quotient group	Theoretical	Weekly quizzes
			lectures	
15 th	4	Commutative group	Theoretical	Weekly quizzes
			lectures	

11. Infrastructure				
1. Books Required reading:	Introduction to Abstract Algebra			
2. Main references (sources)	Rose, John S., A course on group theory, Dover, Newyork 1994			
A- Recommended books and references (scientific journals, reports).				
B-Electronic references, Internet sites				
12. The development of the curriculum plan				
Development and updating are carried out according to the information				

Development and updating are carried out according to the information available from modern sources, in addition to developing illustrations to .increase the student's understanding and awareness of the course material